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Use of the Ewald sphere in aligning crystal pairs to produce X-ray moir~ fringes. By J. BR/,DLER* AND A.R. LANG, 
H.H. Wills Physics Laboratory University of Bristol, England. 

(Received 17 July 1967) 

One crystal plate can be superposed upon another of the same material to produce observable X-ray moir6 
fringes in the simultaneously diffracted beam transmitted through the plates. During alignment it is necessary 
to determine, and then minimize, the small difference vector between the acting reciprocal lattice vectors. 
By rigid rotation of the crystal pair about the mean reciprocal lattice vector the Ewald sphere is caused to 
make various angles with the difference vector. This vector can then be fully determined by measuring its 
component normal to the Ewald sphere at two or more settings of the sphere. 

We have recently developed methods for superposing one 
crystal plate upon another so as to produce X-ray moir6 
fringes with repeat periods in the range 10-500 microns, 
such fringes being easily photographed by standard X-ray 
topographic techniques. Previous X-ray moir6 fringe work 
has been done with (a) X-ray interferometers (Bonse & 
Hart  1965a, b, c; 1966a, b; 1968) in which parts of a single 
crystal of silicon are milled away to leave just the interfero- 
meter elements upstanding; (b) superposed nearly parallel 
growths of platelet cadmium sulphide crystals (Chikawa, 
1965); and (c) cracks in quartz at which moir6 fringes 
o c c u r  owing to the relative displacement of the two sides 
of the crack (Lang & Miuscov, 1965). In all the above-cited 
works the fringes have been formed between elements of  
crystal grown in a perfect or nearly perfect alignment which 
has been little disturbed since growth. To produce moir6 
fringes between crystal elements which have been physically 
separated from each other involves the stringent require- 
ment of bringing their respective Bragg-plane normals 
together within a solid-angle range as small as 10-10 
steradian. This process of alignment, apparently arduous, 
has been turned into a routine operation by a simple ex- 
ploitation of the well-known Ewald sphere geometry. 

The experimental problem is illustrated by Fig. 1 which 
shows the region of reciprocal space containing A, the tip 
of the operating reciprocal lattice vector, gA, of one crystal 
slice, and B, the tip of gn, the operating reciprocal lattice 
vector of the second slice. The vector gA points directly 
towards the observer, and gn nearly so. The crystals are of" 
the same species, with closely similar lattice parameters, 
and use the same Bragg reflexion, so that Igal = Ignl very 
nearly. The crystal plates themselves are each used in sym- 
metrical transmission and one is placed closely behind the 
other so that both incident and diffracted beams leaving 
the first crystal subsequently pass through the second crys- 
tal. In Fig. 1 X ' A X  is the trace of the plane containing the 
rays incident upon and diffracted by a given element of the 
first crystal. Since the slit-collimated incident beam has a 
divergence in this plane at least ten times the angular range 
of reflexion of the crystal, both the first and second crystals 
are readily set by coarse angular adjustments to realize their 
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full integrated reflexions. The trace of the Ewald sphere 
for the ray in the plane X'A which satisfies the Bragg con- 
dition exactly in the element of the first crystal considered 
is shown by YA Y', and is sufficiently closely represented 
by a straight line in the small region of reciprocal space in- 
volved. In order to produce observable moir6 fringes two 
conditions must be satisfied. Firstly, B must be brought to 
lie within a thin band centred on YY" so that the angular 
range of rays which undergo Bragg reflexion at the second 
crystal falls within that of rays Bragg reflected by the first 
crystal. For practical purposes, with the crystals and radia- 
tions used, this range can be taken as _+ 1" of arc. It is in- 
dicated by the vertical dashed lines on Fig. 1. The distance 
of B from the Ewald sphere is called ~,. The second con- 
dition is that the distance of B from X ' X  be not too large 
for moir6 fringes to be resolved. The moir6 fringe period 
(when lgAI = Ig~l) is inversely proportional to this distance 
which we call r. For easy recognition on fast coarse- 
grained X-ray film a fringe spacing not finer than 40 
microns is desirable and this corresponds to a range of 
__ 1" of arc with the silicon 220 reflexion, and is indicated 
by the horizontal dashed lines. B is 'home' when it lands 
in the obliquely shaded area of small ~, and small r sur- 
rounding A. Now ~, can be determined, and hence mini- 
mized, with progressive fineness, by observations in succes- 
sion on the half width of the overlapping reflexions from 
the two crystals, the peak reflected intensity, and the inten- 
sity profile across the diffracted beam. On the other hand 
there is no simple method for finding r when it is fairly 
small (say less than 100") but still outside the shaded 
region. The problem is solved by rigid rotation of the crys- 
tal pair about the mean reciprocal lattice vector, so that, 
in a coordinate system fixed to the crystals, as used in Fig. 1, 
the trace of the Ewald sphere is tilted away from the vertical. 
A rotation of the crystals clockwise by 45 ° (looking towards 
the reciprocal lattice origin) brings the Ewald sphere trace 
to EaEx', and an anticlockwise rotation by 45 ° from the 
initial position brings it to E2E 2. If in each position ), (de- 
fined as the distance from the Ewald sphere in its current 
position) is made very small by appropriate movement of 
B normal to the Ewald sphere, then B is 'home'  in just two, 
independent, steps: viz. the step from B to B' and from 
B' to A. In practice a few, but not many, more steps may 
be needed. On the other hand it is found that sufficient 
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Fig. 2. Pure rotat ion moir6 formed by superposi t ion of one silicon plate upon the other. Reflexion 220, reciprocal lattice vector 
horizontal ,  radiat ion Mo K0¢. Field 1 m m  square. Recorded on Ilford L4 nuclear emulsion.  
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Fig. 1. Region of reciprocal space including the tips ,4 and B 
of the active reciprocal lattice vectors of the first and second 
crystals. 
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independence of the steps is obtained with rotat ion ranges 
as little as half the + 45 o shown in Fig. 1. 

Fig. 2 shows an example of the beautifully regular 
fringes formed by superposing one plate of perfect silicon 
upon another. The plates were about one millimetre thick, 
so that for each at ~ 1. Equally clear and straight fringes 
were observed over an area of 45 mm2. The fringes re- 
present a pure rotat ion moir6, the rotation, as determined 
from the fringe period of 17 microns, is 2½" of arc. 
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Vector methods are used to derive relationships between angles that occur in the direct and the reciprocal 
lattices, to give pedagogically useful demonstrations of the power of vector algebra and the reciprocal 
lattice concept. Several relationships involve the unit-cell volumes of the direct or the reciprocal lattices. 

t h e  mathematical apparatus used in defining the reciprocal 
lattice was first outlined by Gibbs (1881, 1906) and Wilson 
(1909, p. 81) in connection with the geometric problem of 
expressing a vector in terms of three arbitrary non-coplanar 
vectors. The application of this formalism to the problems 
of X-ray diffraction is chiefly due to Ewald (1913a, b, 1921, 
1936) and Bernal (1926). While vector methods are uniform- 
ly used to describe and manipulate the reciprocal-lattice 
relations, equations between direct-lattice and reciprocal- 
lattice quantities are usually derived by spherical trigono- 
metry. Vector methods may, however, be substituted ad- 
vantageously, with the important  pedagogical purpose of 
demonstrating further the great power of vector algebra. 
The following examples are offered as illustrations. 

Consider three unit vectors a*, b*, e*, directed along the 
reciprocal-lattice axes. The vector al ~ x b* is of length sin y* 
and oriented parallel to the e direct-lattice axis, and the 
vector b~' x el ~ is of length sin ~* and oriented parallel to the 
a direct-lattice axis, while the scalar quantity (a* x b*)" 
(b~ × c*) has the magnitude sin y* sin ~* cos P. The follow- 
ing vector identity given by Wilson (1909, p. 76) may readily 
be established by expansion in terms of the vector com- 
ponents: 

(a x b) . (e x d)=  b . e  b . d  " (1) 

* Contribution no. 3550 from the Gates and Crellin Labor- 
atories of Chemistry. 

For  the special case above one writes 

a*. b~ 
(a~ × b~'). (b* x c~')= b~ b~ b~a*" cl ~c*[" (2) 

o r  

sin ~, sin ~,, cos,8= I c°s Y* c°s ,8" I 
1 cos ~* " (3) 

This gives the usual transformation 

cos ~t* Cos 7* -- COS fl* 
cos p . . . . . . . . . .  . (4) 

sm ~* sin ~,* 

This equation is closely related to the cosine formula of 
spherical trigonometry, 

cos r - c o s  s cos t 
cos R = (6) 

sin s sin t 

where r, s, and t are the sides of a spherical triangle and R 
is the angle opposite r. 

The volume V of the direct cell extended by the vectors 
a, b, and e may be found from the following vector identity 
(Wilson, 1909, p. 87): 

I 
P . A  P . B  P . C [  

( P . Q x R ) ( A . B x C ) =  Q . A  Q . B  Q . C  . (7) 
R A R B R C 


